Evolution Strategies, Network Random Keys, and the One-Max Tree Problem
نویسندگان
چکیده
Evolution strategies (ES) are efficient optimization methods for continuous problems. However, many combinatorial optimization methods can not be represented by using continuous representations. The development of the network random key representation which represents trees by using real numbers allows one to use ES for combinatorial tree problems. In this paper we apply ES to tree problems using the network random key representation. We examine whether existing recommendations regarding optimal parameter settings for ES, which were developed for the easy sphere and corridor model, are also valid for the easy one-max tree problem. The results show that the 5 -success rule for the (1+1)-ES results in low performance because the standard deviation is continuously reduced and we get early convergence. However, for the (μ+λ)-ES and the (μ, λ)-ES the recommendations from the literature are confirmed for the parameters of mutation τ1 and τ2 and the ratio μ/λ. This paper illustrates how existing theory about ES is helpful in finding good parameter settings for new problems like the one-max tree problem.
منابع مشابه
Network Random Keys-A Tree Representation Scheme for Genetic and Evolutionary Algorithms
When using genetic and evolutionary algorithms for network design, choosing a good representation scheme for the construction of the genotype is important for algorithm performance. One of the most common representation schemes for networks is the characteristic vector representation. However, with encoding trees, and using crossover and mutation, invalid individuals occur that are either under...
متن کاملA Multi-population Genetic Algorithm for Tree-shaped Network Design Problems
In this work we propose a multi-population genetic algorithm for tree-shaped network design problems using random keys. Recent literature on finding optimal spanning trees suggests the use of genetic algorithms. Furthermore, random keys encoding has been proved efficient at dealing with problems where the relative order of tasks is important. Here we propose to use random keys for encoding tree...
متن کاملQuasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملRandom Key Pre-Distribution Techniques against Sybil Attacks
Sybil attacks pose a serious threat for Wireless Sensor Networks (WSN) security. They can create problems in routing, voting schemes, decision making, distributed storage and sensor re-programming. In a Sybil attack, the attacker masquerades as multiple sensor identities that are actually controlled by one or a few existing attacker nodes. Sybil identities are fabricated out of stolen keys, obt...
متن کاملEncoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys
Permutations of vertices can represent constrained spanning trees for evolutionary search via a decoder based on Prim’s algorithm, and random keys can represent permutations. Though we might expect that random keys, with an additional level of indirection, would provide inferior performance compared with permutations, a genetic algorithm that encodes spanning trees with random keys is as effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002